
Steve Haynal

Contact
Information

steve@softerhardware.com http://www.softerhardware.com
509-524-8620 Mailing address available upon request

Expertise Programming (Python, C/C++, functional languages), Embedded Linux, RTL (Verilog, Sys-
temVerilog, VHDL), FPGA-based design, Front-end CAD tools and methodologies for VLSI design,
High-level design and synthesis, Formal methods for hardware verification, Brute-force symbolic
search for optimal algorithms (scheduling, FFT), Computer networks

Education Ph.D., Electrical & Computer Engineering, University of California, Santa Barbara, 2000

• Dissertation: Automata-Based Symbolic Scheduling for High-Level Synthesis

M.S., Electrical & Computer Engineering, University of California, Santa Barbara, 1997

Professional
Experience

R&D Staff Engineer, Mentor Graphics 2014 – present
Researched & developed hardware and software for Certus, a commercial EDA tool for FPGA
prototype debug

Co-founder, CloudDLS 2012 – present
Developed hardware & software for www.clouddls.com, a business to collect field data samples and
send them to the cloud via M2M

Research Scientist, SofterHardware 2010 – 2011
Researched & developed techniques for generating and searching families of FFT algorithms

Research Scientist, Intel 2001 – 2009
Researched & developed CAD tools and methodologies, primarily for the front-end of VLSI design,
RTL and higher, as detailed in the following topics:

SystemVerilog Refactoring and Rewriting – Following the spirit of software refactoring,
this work introduces both manual (with automatic test generation) and automated refactoring
to register transfer languages, RTL, used to specify hardware design. Demonstrated applications
include abstracting legacy RTL to improve human readability as well as preparing RTL for broader
reuse and inclusion in an IP library.

• Abstracted the Execution Unit RTL from a legacy Pentium to 1/3 its size in terms of source
lines of code. Each small rewrite step applied to the Pentium was verified with SAT-based FEV
tools. The final abstracted RTL was validated by booting Linux on a FPGA-based emulation
platform.

• Developed automated refactoring tools to refactor chipset bus interface Verilog to meet specific
stricter CPU coding guidelines. This automated refactoring prepares the chipset RTL for
broader reuse and inclusion in a corporate IP library without months of manual rewrite effort.

• All software development was done on Linux platforms with Python and C++. A commercial
library from Verific, distributed at source-level, was substantially extended to enable this work.

Integrated Design and Validation System – The Integrated Design and Validation system,
or IDV, is a design by refinement system where small but formally verified changes are applied to
a netlist model. Hundreds of these small transformations can refine a relatively abstract netlist
model into a performance implementation.

• Developed the RTL import module. This module synthesizes RTL into a high-level IDV netlist
model.

• Integrated logic synthesis tools for pre-, post- and pocket-synthesis applications. Using IDV’s
ability to quickly and graphically carve out small “pockets” of a design, logic synthesis can be
applied locally to preprocess the design and better direct traditional batch synthesis tools or
postprocess the design to fix local problems after traditional batch synthesis. Alternatively,
traditional batch synthesis tools can be eliminated by using a combination of pocket synthesis
and manual design with IDV.

http://www.softerhardware.com
http://www.softerhardware.com/pdf/abss.pdf
http://www.www.clouddls.com


• Applied IDV to real design to refine the methodology and direct tool development. This
included specifying in reFLect, a functional language, a high-level netlist model of a IA-64 bus
queue. A functional block from the IA-64 model was refined to a performance implementation.
Pre- and post-synthesis gains were demonstrated on other IA-64 functional blocks.

• Developed automated rewrites and applied this to create an automated speculation trans-
formation. This extended IDV’s original classes of transformations (trusted automated and
verified manual) to include complex but verified automated transformations. This was applied
to create speculation transformations which are used to fix locally slow logic via duplicating
logic and speculating on late signals.

• Implemented miniPBS, a light-weight production-based specification language to capture finite
state machines in IDV. Several FSMs from a legacy Pentium were respecified in miniPBS in a
more concise and malleable form.

• Created a project-wide regression suite and methodology.
• Developed an XML import module to import tables from microprocessor designs as an initial

netlist model.
• All software development was done on Linux platforms with reFLect (a functional language),

tcl/tk, and C++. A team of 5 to 10 people, with varying size through its history, worked on
IDV.

Automata-Based Symbolic Scheduling – Using formal technologies (binary decision diagrams),
Automata-Based Symbolic Scheduling or ABSS solves high-level synthesis scheduling problems
exactly.

• Applied ABSS to a unit from the Pentuim 4 processor. This demonstrated that given the
design constraints to work under, the unit designer had chosen an optimal schedule for his
unit.

• Applied ABSS to fine-grained scheduling of IA-64 math library routines. This showed that
ABSS can be used for detailed software scheduling and identified optimal schedules for math
routines under the unique constraints of a specific IA-64 architecture.

• Applied ABSS to a chipset graphics pipelines. This revealed implementations with lower
latency given varying resource constraints.

• All software development was done on Linux platforms with Python and C++. An open source
BDD library enabled this research.

Academic Mentoring and Service – A goal of Intel’s Strategic CAD labs is to work with
academics to enable better and more Intel-relevant research in VLSI CAD.

• Mentored CMU research in applying the Bluespec language to specify a simple IA-64. This
design was emulated on an FPGA platform and also required writing Linux software and
drivers for testing.

• Mentored UC Santa Barbara research in developing a design specification language, pytdl,
based on synchronous elastic flow semantics. Pytdl was used to design a multithreaded, low-
latency microcontroller for real-time control loop applications.

• Visited UC Santa Barbara for 3 months to work with professors on CAD problems of interest
to Intel.

• Conference service: DAC 2003, DATE 2003 track committee member, ICCAD 2003 session
co-moderator, ICCD 2006 track chair.

Owner, SofterHardware 1998 – 2001
Designed, prototyped and tested FPGA-based quadrature decoder PCI cards, Verilog IP cores,
wrote Linux/Windows drivers and software libraries

Engineering Technician, Fischer Computer Systems 1989 – 1993
Designed, prototyped and tested quadrature decoder products as well as microcontroller-based
paintball speed sensor

Teaching
Experience

Contract Teacher, Walla Walla University 2010 – 2013

• Taught courses in Digital Logic and Computer Networks

Contract Teacher, Technical Research Associates, Inc. 1998 – 2000



• Developed and taught intensive courses in Visual C++

Teaching Assistant, University of California, Santa Barbara 1995 – 1999

• Developed and supervised labs in digital design, computer architecture
• Supervised other teaching assistants as lead teaching assistant

High School Teacher, San Fernando Valley Academy, Northridge 1993 – 1995

• Taught computer literacy, physics, chemistry, earth science, biology and math

Publications Haynal, S. and Haynal, H., “Brute-Force Search of Fast Convolution Algorithms”, Acoustics, Speech
and Signal Processing, 2013. Proceedings of the 2013 IEEE International Conference on, pp. 2586-
2590, preprint at http://www.softerhardware.com/fft, 2013.

Haynal, S. and Haynal, H., “Generating and Searching Families of FFT Algorithms”, Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, pp. 145-187, 2011.

Haynal, S., “Refactoring to Prepare RTL for Reuse”, IP’08,
http://www.design-reuse.com/articles/20119/refactoring-rtl-reuse.html, 2008.

Haynal, S., et al., “A SystemVerilog Rewriting System for RTL Abstraction with Pentium Case
Study”, MEMOCODE 2008, pp. 79-88.

Brewer, F. and Haynal, S., “Symbolic NFA scheduling of a RISC microprocessor”, IEEE Trans.
VLSI Syst., vol. 10, no. 4, pp. 429-434, 2002.

Haynal, S. and Brewer, F., “Automata-Based Symbolic Scheduling for Looping DFGs”, IEEE
Trans. Computers, vol. 50, no. 3, pp. 250-267, 2001.

Haynal, S. and Brewer, F., “Representing and Scheduling Looping Behavior Symbolically”, ICCD
2000, pp. 552-555.

Haynal, S. and Brewer, F., “A Model for Scheduling Protocol-Constrained Components and Envi-
ronments”, DAC 1999, pp. 292-295.

Haynal, S. and Brewer, F., “Efficient encoding for exact symbolic automata-based scheduling”,
ICCAD 1998, pp. 477-481.

Haynal, S. and Parhami, B., “Arithmetic Structures for Inner-Product and Other Combinations
Based on a Latency-Free Bit-Serial Multiplier Design”, Proc. of the 30th Asilomar Conf. on
Signals, Systems and Computers, pp. 197-201, 1996.

Haynal, S., “A Microcontroller Based Multimode Reader”, QEX, June 1991.

Invited
Talks

Haynal, S. and Haynal H., “Generating and Searching Families of FFT Algorithms”, SMT 2011,
July 2011.

Haynal, S., “VLSI Design at Intel”, Walla Walla University, Spring 2009 and Spring 2010.

Haynal, S., “Integrated Design and Validation”, University of California at Santa Barbara, Fall
2005.

Haynal, S., “Automata-Based Symbolic Scheduling”, Carnegie Mellon University, Fall 2002.

Haynal, S., “Automata-Based Symbolic Scheduling”, University of Colorado at Boulder, Spring
2002.

Honors and
Awards

Delco Defense Systems Operations Graduate Fellowship, 1998.

Experienced category, 2nd place, Univ. of Michigan’s VLSI design contest, 1997.
• Paper, Slides

Teacher of the Year at San Fernando Valley Academy, 1995.

Richard E. Fischer Award for excellence in technology, 1990.

Interests Linux, Piano/Keyboards, Singing, Audio DSP, Amateur Radio, Tiny Computers, GPGPU, Electric
Vehicles, Home Energy, Ethnic Foods, Travel, Gardening, Reading, Open Source Projects Hermes-
Lite and PySDRVNA

http://www.softerhardware.com/fft/files/fastconvolution03302013.pdf
http://www.design-reuse.com/articles/20119/refactoring-rtl-reuse.html
http://www.softerhardware.com/pdf/rogueppr.pdf
http://www.softerhardware.com/pdf/roguesld.pdf
https://github.com/softerhardware/Hermes-Lite
https://github.com/softerhardware/Hermes-Lite
https://code.google.com/p/pysdrvna/

