
Fast Convolution Flowgraph with Problem Statement
g0 g1 g2 g3 g4 g5 g6 g7 h0 h1 h2 h3 h4 h5 h6 h7

× × × × × × × ×

Y (0)Y (4)Y (2)Y (6)Y (1)Y (5)Y (3)Y (7)

FFT FFT

IFFT

Do various weights of e−i 2π
n on the

multiplier input and output operands
reduce total arithmetic complexity?

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 1 / 15

Contributions

Novel techniques to enumerate and search families of FFT-based algorithms
Proved minimum FLOP count of fast convolution algorithms when all FFT and IFFT twiddle
factors are nth roots of unity and flowgraph structure is fixed
Found and posted new fast convolution algorithms with minimum FLOP count given
formulation constraints

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 2 / 15

Solution Strategy at 20,000 Feet

Cast Fast Convolution’s FFTs and IFFT as Satisfiability problems to find minimum FLOP
count

Extension of techniques developed in our earlier work
Each FFT and IFFT is searched independently
State-of-the-art SAT solvers are employed

Relax SAT formulation to allow FFTs that produce arbitrary weighted result operands
Relax SAT formulation to allow IFFT that accepts arbitrary weighted input operands
Cancel costs of additional weights in fast convolution’s multiplication

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 3 / 15

Classic Fast Fourier Transform

a0 a1 a2 a3 a4 a5 a6 a7

0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4

0 0 0 0 0 4 0 4 0 0 0 0 2 6 2 6

0 0 0 4 0 0 2 6 0 0 1 5 0 0 3 7

0 0 0 0 0 0 0 0

X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7)

Twiddle Factor is ω4
8

a3

a3ω
0
8

a3ω
0
8 + . . .

a3ω
2
8 + . . .

· · · + a3ω
2
8 + . . .

· · · + a3ω
3
8 + . . .

· · · + a3ω
3
8 + . . .

· · · + a3ω
3
8 + . . .

X(1) = a0ω
0
8 + a1ω

1
8 + a2ω

2
8 + a3ω

3
8 + a4ω

4
8 + a5ω

5
8 + a6ω

6
8 + a7ω

7
8

X (1) verified to be as defined by FFT with correct weight on a3

Multiplied by Twiddle
Factor

n

log n

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 4 / 15

Annotate FFT Flowgraph with Weight on Base

a0 a1 a2 a3 a4 a5 a6 a7

0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4

0 0 0 0 0 4 0 4 0 0 0 0 2 6 2 6

0 0 0 4 0 0 2 6 0 0 1 5 0 0 3 7

0 0 0 0 0 0 0 0

X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7)

Twiddle Factor is ω4
8

0 0

0 4 Record weight on ai with
lowest i for both incoming
sums as weight on base

a3ω
0
8 a7ω

4
8

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 5 / 15

Weight Stride is an Invariant of the Canonical FFT Flowgraph

a0 a1 a2 a3 a4 a5 a6 a7

0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4

0 0 0 0 0 4 0 4 0 0 0 0 2 6 2 6

0 0 0 4 0 0 2 6 0 0 1 5 0 0 3 7

0 0 0 0 0 0 0 0

X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7)

Twiddle Factor is ω4
8

0 0

0 40 4

0 2

a3ω
0
8 a7ω

4
8

a3ω
0
8 + a7ω

4
8

a1ω
0
8 a5ω

4
8

a1ω
0
8 + a5ω

4
8

a3ω
2
8 + a7ω

6
8a1ω

0
8 + a5ω

4
8

a1ω
0

8 + a3ω
2

8 + a5ω
4
8 + a7ω

6
8

X(5) = a0ω
0

8 + a1ω
5
8 + a2ω

2
8 + a3ω

7
8 + a4ω

4
8 + a5ω

1
8 + a6ω

6
8 + a7ω

3
8

Weight Stride is
difference of weight on
bases, Wstride = 2− 0

Weight stride still equal to 2 for contributed terms

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 6 / 15

FFT Flowgraph with Weight Strides and Two Random Weights on Base

a0 a1 a2 a3 a4 a5 a6 a7

0 0 0 0 0 0 0 0

0 0 0 0 4 4 4 4

0 0 4 4 2 2 6 6

0 4 2 6 1 5 3 7

X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7)

2 6

Invariant Weight Stride,
Wstride = 6

Random choice for
Left Wbase = 2,
Right Wbase is
Left Wbase + Wstride = 6

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 7 / 15

Twiddle Factors from Weights on Base

a0 a1 a2 a3 a4 a5 a6 a7

0 0 0 0 0 0 0 0

0 0 0 0 4 4 4 4

0 0 4 4 2 2 6 6

0 4 2 6 1 5 3 7

X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7)

0 0 0 0 0 0 0 0

5 5 0 0 0 0 5 5 6 2 5 1 6 2 2 6

5 5 0 0 3 7 2 6 2 4 5 7 6 4 5 3

4 4 4 0 5 7 6 4 4 5 6 3 6 1 0 7

2

Invariant Weight Stride,
Wstride = 6

Random choice for
Left Wbase = 2,
Right Wbase is
Left Wbase + Wstride = 6

New twiddle factor
is difference of
Wbase, 5− 3 = 2

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 8 / 15

Random Member FFT with One Path Verified

a0 a1 a2 a3 a4 a5 a6 a7

0 0 0 0 0 0 0 0

0 0 0 0 4 4 4 4

0 0 4 4 2 2 6 6

0 4 2 6 1 5 3 7

X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7)

0 0 0 0 0 0 0 0

5 5 0 0 0 0 5 5 6 2 5 1 6 2 2 6

5 5 0 0 3 7 2 6 2 4 5 7 6 4 5 3

4 4 4 0 5 7 6 4 4 5 6 3 6 1 0 7

5 6 0 5 0 6 5 2 5 2 0 1 0 2 5 6

0 6 0 2 5 7 3 1 4 0 0 0 6 6 5 1

7 7 4 0 2 3 5 2 2 4 0 6 0 2 4 2

4 4 3 2 4 2 2 0

a3

a3ω
2
8

a3ω
2
8 + . . .

a3ω
7
8 + . . .

· · · + a3ω
7
8 + . . .

· · · + a3ω
7
8 + . . .

· · · + a3ω
7
8 + . . .

· · · + a3ω
3
8 + . . .

X(1) = a0ω
0
8 + a1ω

1
8 + a2ω

2
8 + a3ω

3
8 + a4ω

4
8 + a5ω

5
8 + a6ω

6
8 + a7ω

7
8

X (1) verified to be as defined by FFT with correct weight on a3

Multiplied by Twiddle
Factor

n

log n

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 9 / 15

How to Generate a Random Member Weighted FFT Algorithm

Input: Size-n flowgraph with labeled invariants
Output: Size-n flowgraph with twiddle factors assigned
foreach nd ∈ flowgraph do

if nd not in top row then
nd .Wbase ← rand() (mod n)
nd .rWbase ← nd .Wbase + nd .Wstride (mod n)

else
nd .Wbase ← 0

foreach nd ∈ flowgraph do
if nd not in top row then

nd .lp.tfp ← nd .Wbase − nd .lp.Wbase (mod n)
nd .rp.tfp ← nd .rWbase − nd .rp.Wbase (mod n)

if nd in bottom row then
nd .tfp ← rand() (mod n)− nd .Wbase (mod n)

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 10 / 15

Searching a Family of FFT Algorithms

All family members are not equally desirable
Some require fewer FLOPs
Others have “better” twiddle factor sets
Need a way to search and find desirable members: SAT!

How many family members are there?
2n log2 n log2 n

For a 256-point FFT: 216384

Only 1 in 218432 chance of guessing correct twiddle factors
Estimated atoms in the universe is 2264

Fastest supercomputer performs 2144 FLOPS

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 11 / 15

A SAT Formulation

Directly cast “Random Member Algorithm” as SAT
Must also calculate FLOP count directly in SAT model

This Psuedo-Boolean constraint adds complexity
Naïve formulation only works for small size-n

Size-32 455 FLOP search UNSAT in 30 seconds
Time-out of 24 hours reached for size-64 1159 FLOP search

Techniques required to solve larger more interesting cases
Exclude cost symmetries
Share twiddle factors
Partition
Exclude local symmetries

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 12 / 15

FFT Partitioning for Fast Convolution

Terminal weights unknown for fast convolution
Terminal weights known for FFT and hence smaller partitions possible
Symmetrical IFFT partitioning when terminal weights known and initial weights unknown

No Cost

Initial weights known

Independent Subproblems!

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 13 / 15

Results

Brute-force proof of lowest possible FLOP count within search constraints
FFT and IFFT twiddle factors are nth roots of unity
FFT and IFFT flowgraph structure is same as generated by common power-of-two FFTs
SAT-based search limits problem size-n to n = 128

Witness algorithms are posted

Table: FFT or IFFT FLOP Counts

FFT or IFFT n = 64 n = 128
Split-Radix 1160 2824
Unweighted Tangent |ω∗

n | = ∗ 1152 2792
Weighted Tangent |ω∗

n | = ∗ 1120 2720
Weighted SAT Search |ω∗

n | = 1 1136 2744

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 14 / 15

Conclusions and Future Work

Conclusions
Extended work on brute-force search of FFT algorithms to fast convolution

Proved minimum FLOP count of fast convolution algorithms when all FFT and IFFT twiddle factors
are nth roots of unity and flowgraph structure is fixed
Found and posted new fast convolution algorithms with minimum FLOP count given formulation
constraints

Future Work
Describe new FFT algorithms with abstract algebra

Enable better reasoning
Break problem size constraints imposed by SAT

Expand solution space
Alter underlying graph structure
Allow twiddle factors that are not nth roots of unity

Expand search objectives
Not just minimize FLOP count
Minimize cost and complexity of implementation
Maximize overall performance

Steve and Heidi Haynal (SofterHardware) Brute-Force Search of Fast Convolution Algorithms ⇓ 15 / 15

